Posts

Sony, announced the commercialization of 0.5-inch micro OLED with UXGA resolution

Sony announced the upcoming release of the ‘ECX339A’, a 0.5-inch OLED micro-display with UXGA resolution. According to Sony, it has achieved the world’s smallest pixel pitch of 6.3 μm, enabling a resolution 1.6 times higher than its predecessor, “ECX337A “(0.5-inch QVGA (1280 × 960)).

<Sony’s 0.5 inch micro OLED ‘ECX339A’, Source: sony.co.jp>

By employing newly-designed peripheral circuits that operate on half the voltage of previous model, it supports a high frame rate of up to 240 fps, with dual line progressive driving technique and low power operation.

<Comparison of OLED resolution between new product(left) and previous product(right), Source: sony.co.jp>

According to Sony, the high resolution of the existing micro display had problems such as deterioration in picture quality and deterioration in viewing angle due to pixel pitch reduction; however, they have been improved by Sony’s transistor layout, process optimization, and compensation circuit. In addition, the color filter is deposited directly on the silicon substrate, reducing its distance from the light emitting layer, and the filter’s color array has been modified to secure the viewing angle properties while achieving high resolution.

<Structure and viewing angle image, new product (left) and previous product (right), Source: sony.co.jp>

The mass production schedule for the ECX339A is November 2018, and the sample price is set at JPY 50,000 (Tax not included). Sony expects this product to be applied to high-end cameras and head-mounted displays for virtual reality, which require the highest picture quality.

<ECX339A, key specifications, Source: sony.co.jp>

Can BLUE OLED be used for OLED TV?

Samsung Display selected blue OLED + QDCF (blue OLED) as next generation display technology following LCD TV, and started the necessary development.

Blue OLED is a technology, in which blue light emitted from blue OLED passes through a quantum dot color filter to represent red and green colors (b). The WRGB OLED used in OLED TV is a method in which white light passes through a color filter and implements RGB colors (a).

The ‘2018 OLED Materials Industry Report’ published by UBI Research on April 18 describes whether blue OLED, which Samsung Display has started to develop, can become TV OLED panels. The expected development direction and performance (efficiency and lifetime) of blue OLED + QDCF are analyzed. In particular, current status and development trends (fluorescence, phosphorescence, TADF) of blue emitting material, which is the core material of blue OLED, are covered.

Since blue OLED of Samsung Display is top emission type, the aperture ratio is increased by about 70% compared to the bottom emission, which emits light in the TFT direction, so that 8K resolution and high brightness are realized better than the conventional WRGB OLED. In addition, it is expected to reach BT. 2020, the UHD color standard, which was established by the International Telecommunication Union (ITU) in 2012, using QD material with high color reproduction rate as color filter.

In the future premium TV market, 8K and BT. 2020 are necessary conditions for display. WRGB OLED is also being actively developed to implement 8K and BT2020. Attention is focused on the impact of the development of blue OLED in the premium TV market led by WRGB OLED.

In addition, the report analyzes the market status and development trends of the related companies, including overall technology development directions and key issues for new materials such as soluble OLED materials and near IR materials.

Developing ultra-definition display with a color filter technology

A color filter technology has been developed that can bring forward commercialization of next generation’s TVs with ultra-definition visibility and lower prices. The National Research Foundation of Korea (a chairman of the board, Moo-jae, Cho) announced that Prof. for Korea University, Byeong-kwon, Joo’s research team has developed a complementary plasmon color filter having sharp display and high resolution. The color filters which are currently used in the display industry mainly are optical absorption type using pigments or dyes. It has low chemical stability since it is based on organic materials and high unit cost due to manufacturing RGB filters separately. On the other hand, the optical interference type plasmon color filter using inorganic materials can simultaneously produce various color filters at low cost, but there is a problem that the color purity is in decline due to color interference occurring in the two-dimension array of nanostructures.

<Transmittance spectrum according to opening ratio of Hole pattern and dot pattern structures, Source: The National Research Foundation of Korea>

The research team applied a reversal approach to break out the existing pattern as complementary design method that combines dot pattern with hole pattern. It is a general viewpoint of academia that it is difficult to apply dot pattern to a transmission color filter in the form of reversing the existing hole pattern. However, the team assured that the extraction of high purity for red is possible through effective blocking the leakage of short wavelengths by dot pattern under certain conditions. The result is shown that the range of implementing color in the complementary designed plasmon color filter is widened over 30% than before.

<Plasmonic color filter of Hole pattern and Dot pattern structure produced, Source: The National Research Foundation of Korea>

In addition, the implementing of various color of the complementary plasmon color filters is available such as red, green, and blue by adjusting only the geometric parameters of the nanopattern. The performance can be improved without additional costs since the existing materials and manufacturing methods could be used as usual.

Prof. Byeong-kwon, Joo explained that “This research has developed a plasmon color filter with high color reproducibility through a complementary design method. This is expected to accelerate the development of the next-generation display combining nano-optic devices.”

The research results were performed by supporting of the Basic Research Support Project(private research) of the National Research Foundation of Korea at the Ministry of Science, ICT and Future Planning, the Ministry of Education·BK21 support project of the National Research Foundation. It was published in the Scientific Reports affiliated journal of an international journal Nature, on January, 13th.

Solution Process OLED TV is prospected to be launched on the market in 2019, targeting the Mid-end TV Market

According to “Market Entry Analysis for Solution Process OLED -The Possibilities and Opportunities” issued on November 14 by Ubiresearch, OLED TV, produced in solution process method, is prospected to be launched on the market in 2019.

Solution process is a technology which enables producing OLED panel in RGB pixel structure without any panel division on a device higher than G8, which major AMOLED panel producers has actively engaged in developing.

However, lamp efficiency and life cycle have no option to decrease because luminescent materials have lower purity than that of evaporation materials as luminescent materials applied to solution process should be mixed with various solvents in order to make the existing evaporation materials ink. Nevertheless, why major panel producers has actively engaged in developing solution process is that production cost can be declined as the usage efficiency of luminescent materials is high without using color filters and its structure is simpler than that of OLED panel using WRGB method.

According to the report, it is said that although developing luminescent materials for solution process OLED has been fully engaged, it should be more efficient than that of WRGB methods so as to enter the premium market. However, it seems substantially difficult that the capacity of solution process OLED surpasses that of WRGB as WRGB has been developed in top emission structure to improve its efficiency by over 20% and evaporation materials have also constantly been developed. Rather, based on proper level of life cycle and efficiency, it would be competitive to replace LCD targeting the mid-end TV market, according to the report.

Issues on OLED, QLED, hybrid QD, which can be applied to solution process and possibilities to enter the market, comparative analysis on the capacity of present solution process OLED, supply chain of QD industries, and major soluble OLED material producers are included in this “Market Entry Analysis for Solution Process OLED -The Possibilities and Opportunities” and it is expected to help the relevant producers understand the solution process industry.

Meanwhile, it is predicted that the market of large-scaled solution process OLED panel over 55 inch will begin in earnest being mass-produced as of 2019 and have accounted for the entire wide OLED panel market by approximately 15% growing by approximately US$ 1,000 million by 2021.

Aggressive investment on QLED, Shortcut of OLED commercialization

At ‘an analytical seminar on market entry potential of OLED and Solution Process OLED’ having been held in Seoul Small& Medium Business Center on last October 14th, Professor Lee Chang-hee of Seoul National University and Senior Researcher Bang Ji-won of Korea Institute of Ceramic Engineering and Technology shared opinions about current situations of QLED, development trends, and issues.

<Professor Lee Chang-hee of Seoul National University>

<Senior Researcher Bang Ji-won of Korea Institute of Ceramic Engineering and Technology>

Professor Lee Chang-hee said that QLED had excellent color purity because half-width of QLED was narrower than OLED by approximately 20~30nm, and disclosed a fact that QLED was favorable in color reproduction due to high levels of accuracy when manufacturing it, and efficiency of luminescence material reached to regular levels to the degree of catching up OLED. However, he stated technical difficulties of Cd-free QLED which did not use cadmium, a heavy metal, together with securing life stability of QD (Quantum Dot) luminescence materials, and emphasized that investment on QLED is the shortcut of commercialization by saying “The time of commercialization could be moved forward to 5 years or 3 years according to capital and manpower investing scales from the industry.”

Senior Researcher Bang Ji-won pronounced luminescence efficiency of light-emitting materials, stability, non-toxic QD, and approaches by various directions such as QD-LCD which applied QD CCL (Color Change Layer) to blue-LED BLU (Black Light Unit) by using QD, OLED which applied OD-CCL and C/F (Color Filter) to WOLED, OLED that applied QD CCL without C/F to blue-OLED were being progressed.

QLED-related academia discussed about the potential of OLED positively in this way, but CEO Lee Chung-hoon of UBi RESEARCH said “Development of WOLED will be strived too because QLED has already been developed, and if brightness is more enhanced after being evolved to top emission method from current bottom emission one, QLED entry to premium market will become difficult further, and then pronounced “When new technology can enter the market, considerations whether new technology will be good from certain aspects including performance, efficiency, cost etc. shall be made in case of comparing them with the technologies having been commercialized ”